Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674487

RESUMO

Floral bud growth influences seed yield and quality; however, the molecular mechanism underlying the development of floral buds in alfalfa (Medicago sativa) is still unclear. Here, we comprehensively analyzed the transcriptome and targeted metabolome across the early, mid, and late bud developmental stages (D1, D2, and D3) in alfalfa. The metabolomic results revealed that gibberellin (GA), auxin (IAA), cytokinin (CK), and jasmonic acid (JA) might play an essential role in the developmental stages of floral bud in alfalfa. Moreover, we identified some key genes associated with GA, IAA, CK, and JA biosynthesis, including CPS, KS, GA20ox, GA3ox, GA2ox, YUCCA6, amid, ALDH, IPT, CYP735A, LOX, AOC, OPR, MFP2, and JMT. Additionally, many candidate genes were detected in the GA, IAA, CK, and JA signaling pathways, including GID1, DELLA, TF, AUX1, AUX/IAA, ARF, GH3, SAUR, AHP, B-ARR, A-ARR, JAR1, JAZ, and MYC2. Furthermore, some TFs related to flower growth were screened in three groups, such as AP2/ERF-ERF, MYB, MADS-M-type, bHLH, NAC, WRKY, HSF, and LFY. The findings of this study revealed the potential mechanism of floral bud differentiation and development in alfalfa and established a theoretical foundation for improving the seed yield of alfalfa.

2.
Plants (Basel) ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475545

RESUMO

The petals of Medicago sativa ssp. sativa and M. sativa ssp. falcata are purple and yellow, respectively. Free hybridization between M. sativa ssp. sativa and M. sativa ssp. falcata has created hybrids with various flower colors in nature. Moreover, the flower colors of alfalfa are closely correlated with yield, nutritional quality, stress tolerance and other agronomic characteristics. To elucidate the underlying mechanisms of flower color formation in M. sativa ssp. sativa and M. sativa ssp. falcata, we conducted an integrative analysis of the transcriptome and metabolome of alfalfa with three different petal colors (purple, yellow and cream). The metabolic profiles suggested that anthocyanins and carotenoids are the crucial pigments in purple and yellow flowers, respectively. A quantitative exploration of the anthocyanin and carotenoid components indicated that the accumulations of cyanidin, delphinidin, peonidin, malvidin, pelargonidin and petunidin derivatives are significantly higher in purple flowers than in cream flowers. In addition, the content of carotenes (phytoene, α-carotene and ß-carotene) and xanthophylls (α-cryptoxanthin, lutein, ß-cryptoxanthin, zeaxanthin, antheraxanthin and violaxanthin derivatives) was markedly higher in yellow flowers than in cream flowers. Furthermore, we found that delphinidin-3,5-O-diglucoside and lutein were the predominant pigments accumulated in purple and yellow flowers, respectively. The transcriptomic results revealed that twenty-five upregulated structural genes (one C4H, three 4CL, twelve CHS, two CHI, one F3H, one F3'H, one F3'5'H and four DFR) are involved in the accumulation of anthocyanins in purple flowers, and nine structural genes (two PSY, one ZDS, two CRTISO, two BCH, one ZEP and one ECH) exert an effect on the carotenoid biosynthesis pathway in yellow flowers. The findings of this study reveal the underlying mechanisms of anthocyanin and carotenoid biosynthesis in alfalfa with three classic flower colors.

3.
Front Plant Sci ; 11: 1183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983188

RESUMO

Silicon (Si) has been known to enhance salt resistance in plants. In this experiment, 4-weeks-old alfalfa seedlings were exposed to different NaCl concentrations (0-200 mM) with or without 2 mM Si for two weeks. The results showed that NaCl-stressed alfalfa seedlings showed a decrease in growth performance, such as stem extension rate, predawn leaf water potential (LWP) and the chlorophyll content, potassium (K+) concentration, as well as the ratio of potassium/sodium ion (K+/Na+). In contrast, NaCl-stressed alfalfa seedlings increased leaf Na+ concentration and the malondialdehyde (MDA) level, as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in alfalfa leaves. Besides, exogenous Si application enhanced photosynthetic parameters of NaCl-stressed alfalfa seedlings, which was accompanied by the improvement in predawn LWP, level of chlorophyll content, and water use efficiency (WUE). The Si-treated plants enhanced salinity tolerance by limiting Na+ accumulation while maintaining K+ concentration in leaves. It also established K+/Na+ homeostasis by increasing K+/Na+ radio to protect the leaves from Na+ toxicity and thereby maintained higher chlorophyll retention. Simultaneously, Si-treated plants showed higher antioxidant activities and decreased MDA content under NaCl stress. Our study concluded that Si application enhanced salt tolerance of alfalfa through improving the leaves photosynthesis, enhancing antioxidant performance and maintaining K+/Na+ homeostasis in leaves. Our data further indicated exogenous Si application could be effectively manipulated for improving salt resistance of alfalfa grown in saline soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...